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Magneto-elastic nonlinear non-axisymmetric resonance is investigated for a rotating annular
plate in a double-direction magnetic field. According to transverse and longitudinal magneto-
-elastic non-axisymmetric vibration equations of the thin annular plate, and considering the
influence of the static load term, non-axisymmetric vibration differential equations by com-
bined parametric and forced excitations are obtained through application of the Galerkin
method. Then, the method of multiple scales is applied to solve differential vibration equ-
ations. By numerical computations, the influence of magnetic induction intensity, inner and
outer diameters, excitation and radial forces on transverse and longitudinal resonance cha-
racteristics are analyzed.
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1. Introduction

Rotating annular components are widely used in aerospace, large generator sets, mechanical
devices accompanied by impacts of complex environment. A change of system initial conditions
and physical parameters of an annular plate in complex environment such as mechanical fields
may lead to large vibration and instability of the annular plate and damage the system. With
the development of modern industry, in order to make hard disks have a faster reading speed,
the cutting speed of the machine blade should be increased and precision of the finished product
improved. The security and stability requirements also increase. When a rotating structure is
affected by external forces, it will produce corresponding vibration modes and noise pollution,
accelerate wear of machine components, waste energy, and reduce the working life and efficiency
of the machine, which is very adverse to the operation of the machine. Mechanical components
will be damaged, and even endanger personal safety. Therefore, it is valuable and meaningful to
study the vibration of rotating annular plates.

Many researchers have done a lot of theoretical research on magneto-elastic vibration of
structures. Narain and Srivastava (2004) studied magneto-elastic torsional vibration of a non-
-homogeneous aeolotropic cylindrical shell made of viscoelastic solids and derived the frequency
equation of the shell. Hu and Wang (2016), Hu and Li (2017, 2018) and Hu et al. (2018a) studied
vibration of a rotating circular plate in a magnetic field, established electromagnetic nonliner
vibration equations and analyzed principal parametric and combined resonances. Meanwhile,
bifurcation, chaos and free vibration under static loads were discussed, and the influence of
a variable parameter on the resonance characteristics of the system was analyzed. Li et al.
(2017) studied nonlinear principal parameter vibration and stability of a rotating circular plate
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with variable speed in a magnetic field and derived the magneto-elastic vibration equation of
a rotating circular plate in a magnetic field. The resonance amplitude response equation of the
nonlinear principal parameter was obtained by using the multi-scale method, and the effects of
parameters on the system stability were discussed.

As the problem of rotating plates, the annular plate is also a subject studied by scholars.
Chen and Chen (2007) analyzed non-axisymmetric vibration and stability of rotating sandwich
annular plates by means of the finite element method, and the effects of stiffness and thickness
on vibration of the system were discussed. Maretic et al. (2007) studied transverse vibration
of an annular plate under different boundary conditions, analyzed the influence of different pa-
rameters and boundary conditions on the vibration frequency, and determined the instability
critical value of angular velocity and moment of the annular plate through stability analy-
sis. Yeh (2011) discussed free vibration of rotating annular plates with electrorheological dam-
ping. The natural frequencies and loss factors of the system were obtained by solving complex
eigenvalues of the system. Younesian et al. (2015) studied vibration of a hollow annular pla-
te under the action of a rotating force. The finite element model was established by using
the Galerkin method, and the model was verified by computer simulation. Kang (2017) stu-
died axisymmetric free vibration of rotating annular plates with variable thickness by using
the Ritz method. The stress, strain and radial displacement of rotating annular plates were
obtained by calculation. At the same time, the natural frequencies and modes of rotating nonu-
niform annular plates with different angular velocities and internal and external diameters were
given.

Aiming at the parametric vibration and combined vibration of the system, Hu et al. (2018b)
studied the resonance of the principal parameter of the axial moving beam under a static load
and analyzed the influence of variation of the parameters on the resonance characteristics of the
system. Wu et al. (2007) provided equations of motion of a cable and studied the effect of periodic
excitation on nonlinear parametric vibration of the cable. Xia et al. (2011) used the finite element
method to study nonlinear vibration of a cable-beam system under simple harmonic and random
loads and compared it with the analytical solution and experimentally verified the correctness of
the finite element method. Tylikowski and Frischmuth (2003) analyzed stability of a circular plate
parameter vibration under the action of a plane force with the Lyapunov method and analyzed
the stability problem of the circular plate. Awrejcewicz et al. (2004, 2006) studied parametric
vibration of flexible plates and transformed the solution into partial differential equations to ana-
lyze the effect of parameter variation on vibration. Hu and Zhang (2013) analyzed the resonance
problem of the main parameters of a rectangular plate and the influence of a periodic excitation
force and axial velocity on stability of the system. Niu et al. (2012) studied dynamic cha-
racteristics of rectangular plates under an in-plane periodic loading. They established a partial
differential equation based on a mechanical model, solved and analyzed the amplitude-frequency
relation by using the harmonic balance method and studied stability of the solution as well as
the stable region of the system. Ma et al. (2014) studied the principal parameter resonance of a
plate under a moving boundary condition and discussed the amplitude-frequency and amplitude-
-excitation relation. Zhang and Huo (1991) studied the bifurcation problem of nonlinear systems
under the combined action of parameter and forced excitation, and obtained many valuable
conclusions.

On the basis of the magneto-elastic transverse and longitudinal vibration equations of ro-
tating circular plates, the static load term is considered and differential equations of vibration
by the combined parametric and forced excitations are derived. The resonance responses for
the combination of the primary resonance-principal parameter resonance of different modes are
obtained by means of the multi-scale method. By using a numerical example, the influence of
different parameters on the resonance characteristics is analyzed.
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2. Double-direction vibration equations of the rotating annular plate

Consider a circular plate rotating in a double-direction magnetic fieldB(B0r, 0, B0z) at a constant
rotational angular speed Ω. The plate is subjected to transverse load Pz and radial force F0r,
as shown in Fig. 1. We assume F0r = F0 + F1 cos(ω1t).

Fig. 1. The mechanical model of the rotating annular plate

Since the rotating annular plate studied in this paper is a symmetric structure and the bo-
undary constraints and external loads are symmetric, the radial displacement ur is considered to
be a function of r while the toroidal displacement uθ can be neglected. According to the expres-
sion of kinetic and strain energy, one can derive magneto-elastic nonlinear non-axisymmetric
vibration equations of the spinning annular thin plate by using the Hamilton principle as follows
(Hu and Li, 2017)
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(2.1)

in which ρ denotes material density, w – transverse displacement, ur – longitudinal displace-
ment, σ0 – electric conductance, the flexural rigidity is DM = Eh

3/[12(1 − µ2)], tensile rigidity
DN = Eh/(1 − µ

2), E denotes Young’s modulus and µ denotes Poisson’s ratio,
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It can be concluded that there are static load terms in the longitudinal vibration equation
when the rotating annular plate is subjected to the radial load. It is assumed that the circu-
lar plate has the initial deflection u0, and its deflection is u1 when it vibrates. So, the total
deflection ur can be written as

ur = u0 + u1 (2.2)

Then Eq. (2.2) can be rewritten as
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The initial deflection u0 satisfies the equation
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The annular thin plate with inner-clamped and outer-free boundary conditions is analysed.
Equation (2.4) can be solved by using the Galekin method in which we assume (Chonan et al.,
1986)

u0 = f0
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Substituting Eq. (2.5) into Eq. (2.4), one can obtain

f0 = −
a2
a1

(2.6)

We assumed that w and additional deflection u1 can be written as follows (Chonan et al.,
1986)

w =
N∑

n=0

W (r)Twn(t) cos(nθ) u1 = Um(r)Tu(t) (2.7)

Let M = 0 and N = 1, then Eq. (2.7) is

w =W (Tw0 + Tw1 cos θ) u1 = U0Tu (2.8)

Substituting Eq. (2.8) into Eqs. (2.1) and using the Galerkin method, resonance differential
equations are obtained

A11T̈w0 +A12Ṫw0 + (A13 +A14F0r)Tw0 +A15T
3
w0 +B16Tw0T

2
w1 + C11Ṫu

+ C12Tw0(Tu + f0) +APPz = 0

B21T̈w1 +B22Ṫw1 + (B23 +B24F0r)Tw1 +B25T
3
w1 +A26T

2
w0Tw1 + C23Tw1(Tu + f0) = 0

D11T̈u +D12Ṫu +D13Tu +D14T
2
w0 +D16T

2
w1 +D18Ṫw0 −DFF1 cosω1t = 0

(2.9)
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3. The theoretical solution of resonance by the combined parametric and forced

excitation

Let Pz = P1 cosω2t and introduce nondimensional variables ω1t = 2τ , ω2t = τ and a small
parameter ε to study weakly nonlinear oscillations. Equations (2.9) are rewritten as

q̈0 + 2εζ1q̇0 + ω
2
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3
0 + εα13q0q

2
1 + εα14q̇u

+ εα15q0(qu + f) + εα16 cos τ = 0

q̈1 + 2εζ2q̇1 + ω
2
02q1 + εα21 cos(2τ)q1 + εα22q

3
1 + εα23q

2
0q1 + εα24q1(qu + f) = 0

q̈u + 2εζ3q̇u + ω
2
03qu + εα31q

2
0 + εα32q

2
1 + εα33q̇0 = εα34 cos(2τ)

(3.1)

It can be noted from Eqs. (3.1) that the system possesses different resonance conditions when
ω01, ω02, ω03 are respectively close to 1. In the following Subsections, these resonance cases are
discussed.

Case I: ω01 ≈ 1

We assume

ω01 = 1 + εσ (3.2)

where σ denotes the nondimensional detuning parameter. ω02 and ω03 can be written in the
form
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√
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By the use of the method of multiple scales (Chonan et al., 1986), the solutions to Eqs. (3.1)
in terms of different time scales can be expressed as

q0(τ, ε) = q01(T0, T1) + εq02(T0, T1) q1(τ, ε) = q11(T0, T1) + εq12(T0, T1)

qu(τ, ε) = qu1(T0, T1) + εqu2(T0, T1)
(3.3)

Substituting Eqs. (3.2) and (3.3) into Eqs. (3.1), and equating the coefficients of the same
order of ε in both sides, the following equations are obtained
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where D0 = ∂/∂T0, D1 = ∂/∂T1. The solutions to Eq. (3.4)1, Eq. (3.4)3 and Eq. (3.4)5 are

q01 = S1(T1) exp(iT0) + S1(T1) exp(−iT0)

q11 = S2(T1) exp(ig1T0) + S2(T1) exp(−ig1T0)

qu1 = S3(T1) exp(ig2T0) + S3(T1) exp(−ig2T0)

(3.5)
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Substituting Eqs. (3.5) into Eq. (3.4)2, Eq. (3.4)4 and Eq. (3.4)6, because of g1 6= g2 6= 1, we
let the coefficients of exp(iT0) vanish. This gives

− 2iS′1 exp(iT0)− 2iζ1S1 exp(iT0)− 2σS1 exp(iT0)− 3α12S
2
1S1 exp(iT0)

− 2α13S1S2S2 exp(iT0) + α15S1f exp(iT0)−
1

2
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1
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2
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(3.6)

Putting Sn = 0.5a2(T1) exp[iβ2(T1)], n = 1, 2, 3 in Eqs. (3.6) and separating the real and
imaginary terms, one can see that only Eq. (3.6)1 has non-zero amplitude solutions. We have
a′1 = 0, β

′

1 = 0 due to steady-state motion of the system. Hence, we conclude that
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In order to solve Eq. (3.7), we assume

M = a1 cos β1 N = a1 sin β1 (3.8)

We have M ′ = 0 and N ′ = 0 due to steady-state motion of the system. M and N can be
given by
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According to M2 + N2 = a21, the non-axisymmetric vibration differential equation by the
combined parametric and forced excitations of the rotating annular plate is given by
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Case II: ω02 ≈ 1

We assume

ω02 = 1 + εσ (3.11)

where ω02 and ω03 can be written in the form

ω01 = ω02

√
B21(A13 +A14F0)

A11(B23 +B24F0)
= ω02h1 ω03 = ω02
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By the use of the method of multiple scales, substituting Eqs. (3.11) and Eqs. (3.2) and
(3.3)1,2 into Eqs. (3.1), we equate the coefficients of the same order of ε in both sides. According
to case I, we get the following conditions to avoid the occurrence of duration items

− 2iS′2 exp(iT0)− 2iζ2S2 exp(iT0)− 2σg
2
1S2 exp(iT0)− 3α22S

2
2S2 exp(iT0)

− 2α23S1S1S2 exp(iT0) + α24S2f exp(iT0)−
1

2
α21S2 exp(iT0) = 0

(3.12)

Putting S2 = 0.5a2(T1) exp[iβ2(T1)] in Eq. (3.12) and eparating the real and imaginary
terms, we have a′2 = 0, β

′

2 = 0 due to steady-state motion of the system. The frequency-response
equation can be obtained
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Case III: ω03 ≈ 1

We assume

ω03 = 1 + εσ (3.14)

From Eq. (2.23), we can see that in this case the system has the main resonance. We put
ω1t = τ and rewrite nondimensional Eqs. (2.9), which gives

q̈0 + 2ζ̃1q̇0 + ω
2
01q0 + α̃11 cos(τ)q0 + α̃12q

3
0 + α̃13q0q

2
1 + α̃14q̇u + α̃15quq0 + α̃16 cos τ = 0

q̈1 + 2ζ̃2q̇1 + ω
2
02q1 + α̃21 cos(τ)q1 + α̃22q

3
1 + α̃23q

2
0q1 + α̃24quq1 = 0

q̈u + 2ζ̃3q̇u + ω
2
03qu + α̃31q

2
0 + α̃32q

2
1 + α̃33q̇0 = α̃34 cos τ

(3.15)

where ω02 and ω03 can be written in the form

ω01 = ω03

√
D11(A13 +A14F0)

D13A11
= j1ω03 ω02 = ω03

√
(B23 +B24F0)D11

D13B21
= j2ω03

By the use of the method of multiple scales, substituting Eqs. (3.14) and Eqs. (3.3) into Eqs.
(3.15), we equate the coefficients of the same order of ε in both sides. According to case I, we
get the following conditions to avoid the occurrence of duration terms

1

2
α34 exp(iT0)−2iS

′

3 exp(iT0)−2iζ3S3 exp(iT0)−2σS3 exp(iT0)− iα33S1 exp(iT0) = 0 (3.16)

Substituting S3 = 0.5a3(T1) exp[iβ3(T1)] into Eq. (3.16) and separating the real and ima-
ginary terms, we have a′3 = 0, β

′

3 = 0 due to steady-state motion of the system. Hence, we
get

a3 =
α34

2
√
σ2 + ξ23

(3.17)

4. Numerical results and discussions

In the numerical study of the magneto-elastic combination resonance of a copper annular pla-
te with internal-clamped and external-free boundary conditions, the circular plate with the
following parameters is used: electric conductivityσ0 = 5.7143 · 10

7 (Ωm)−1, Young’s modulus
E = 108GPa, Poisson’s ratio µ = 0.33, density ρ = 8920 kg/m3 and Ω = 5000 r/min.
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Case I: ω01 ≈ 1

Figures 2-5 show the response curves of amplitude a1 in relation to the frequency detuning
parameter εσ when ω01 ≈ 1. We note that there are two peaks of the resonance in the figures,
and complex multivalued variations occurred.

Figure 2 (r0 = 0.3m, R = 0.8m, h = 4mm, B0r = 0.06T, B0z = 1T, F1 = 1kN/m,
P1 = 130N/m

2) indicates that the resonance amplitude of the system decreases gradually, the
distance between the two resonance regions increases slightly and the peak value of the left
resonance region extends to the right with an increase in the radial load F0. As the radial
load F0 continues to increase, the number of solutions of the system will be reduced from five
to three, and the resonance amplitude of the system increases with an increase in F0.

Fig. 2. Amplitude-frequency reponse curve for different F0: (a) F0 = 10kN/m, (b) F0 = 15kN/m,
(c) F0 = 30kN/m

Figure 3 (r0 = 0.3m, R = 0.8m, h = 4mm, B0r = 0.06T, B0z = 1T, F0 = 10 kN/m,
P1 = 130N/m

2) shows that the multivalue property of the system has changed greatly with the
increase of the radial load F1. The peak value of the left resonance region is obviously reduced.
The right resonance curve has an intersection point: the resonance amplitude on the left side
of the intersection point gradually increases, and the resonance amplitude on the right side of
the intersection point gradually decreases. The width of the right resonance region increases
gradually. The size of the zero solution region between the two resonance peaks does not change
and the position moves to the left.

Fig. 3. Amplitude-frequency reponse curve for different F1: (a) F1 = 1kN/m, (b) F0 = 3kN/m,
(c) F0 = 5kN/m

Figure 4 (r0 = 0.3m, R = 0.8m, h = 4mm, B0r = 0.06T, B0z = 1T, F0 = 10 kN/m,
F1 = 1kN/m) shows that with an increase in the excitation force P1, the amplitude of the
resonance region on the left side of the system increases gradually, the amplitude of the resonance
region on the right side decreases gradually, and the two resonance regions gradually expand.
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Fig. 4. Amplitude-frequency reponse curve for different P1: (a) P1 = 100N/m
2, (b) P1 = 150N/m

2,
(c) P1 = 200N/m

2

Figure 5a (r0 = 0.3m, R = 0.8m, h = 4mm, B0z = 1T, F0 = 10 kN/m, F1 = 1kN/m,
P1 = 130N/m

2) shows the response curves of the amplitude versus magnetic induction inten-
sity B0r. It can be seen that there are three steady-state solutions when B0r equals zero, the
number of steady-state solution increases to five when B0r increases to 0.01T. As the magne-
tic induction intensity B0r increases to 0.04 T, the number of steady-state solutions is reduced
to three, and the resonance amplitude decreases slightly. Figure 5b (r0 = 0.3m, R = 0.8m,
h = 4mm, B0r = 0.02T, F0 = 10 kN/m, F1 = 1kN/m, P1 = 130N/m

2) shows the response
curves of the amplitude versus magnetic induction intensity B0z. It can be seen that there are
five steady-state solutions when B0z equals zero, which is due to the result of B0r = 0.02T.
With the increase of B0z, the number of steady-state solutions decreases to three, and the am-
plitude decreases slightly. Figure 5c (F1 = 1kN/m, P1 = 130N/m

2, B0r = 0.02T, B0r = 0.02T,
F0 = 10 kN/m, r0 = 0.3m, h = 4mm) shows the response curves of the amplitude versus the
ratio ψ of the outer to inner diameter when R = ψr0 is assumed. It can be seen from the diagram
that with the increase of the ratio ψ from 2, there are three steady-state solutions in the system,
and the amplitude firstly decreases and then increases. The resonance occurs near ψ = 2.4. As
ψ continues to increase, the amplitude of the system gradually decreases and tends to stabilize.
The number of steady-state solutions increases from three to five. When ψ is greater than 3.3,
the number of amplitudes is reduced to three.

Fig. 5. Amplitude-magnetic induction intensity: (a) B0r curve, (b) B0z curve. (c) Amplitude-ratio of the
external and internal diameters curve

Case II: ω02 ≈ 1

Figures 6 and 7 show the response curves of amplitude a2 in relation to the frequency
detuning parameter εσ when ω02 ≈ 1. With an increase in the coordination parameter εσ from
left to right, the amplitude gradually decreases to zero and the resonance disappears.
Figure 6a shows that the amplitude gradually increases, and the vanishing point of amplitude

gradually moves away from the zero point of the transverse axis with the increase of magnetic
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induction intensity B0r. Figure 6b shows that there exists an intersection point for the stable
solution of different radial loads F0 in the graph. With the increase of the radial load F0, the
amplitude of the stable solution increases gradually on the left side of the intersection point, and
the amplitude of the stable solution decreases gradually on the right side of the intersection point.
The vanishing point of the amplitude gradually approaches the zero point of the horizontal axis
with the increase of F0, that is, the resonance region between the stable and unstable solutions
decreases gradually. Figure 6c shows that with the increase of the radial load F1, the amplitude
of the system increases, and the vanishing point of the amplitude is far away from the zero point
of the horizontal axis.

Fig. 6. Amplitude-frequency reponse curves for different: (a) B0r, (b) F0, (c) F1

Figure 7a shows that the unstable solutions of different plate thicknesses have an intersection
point for each two branches. With the increase of plate thickness, the amplitude of the non-
-stable solution decreases gradually on the left side of the intersection point, the amplitude of
the non-stable solutions increases gradually on the right side of the intersection point, and the
amplitude of the stability solution decreases gradually. The vanishing point of the amplitude
gradually approaches the zero point of the horizontal axis with the increase of F0, that is, the
resonance region between the stable and unstable solutions decreases gradually. Figute 7b shows
that the stable solutions with different inner diameters r0 have an intersection in the graph.
With the increase of the inner diameter, the amplitude of the stable solution on the left side of
the intersection point increases gradually, the amplitude of the stable solution on the right side
of the intersection point decreases gradually, and the amplitude of the unstable solution of the
system increases gradually.

Fig. 7. Amplitude-frequency reponse curves for different: (a) h, (b) r0

Case III: ω03 ≈ 1

Figures 8 and 9 show the response curves of amplitude a3 varying with the frequency detuning
parameter εσ when ω03 ≈ 1. It can be seen that with a change of the parameters, the variation
of the amplitude of the system is small. Figures 8 and 9a show that with an increase in the
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magnetic induction intensity B0z, radial load F0, outer diameter of the annular plate R and a
decrease in the radial load F1, the radial amplitude of the annular plate increases gradually.

Fig. 8. Amplitude-frequency reponse curves for different: (a) B0z , (b) F0, (c) F1

Fig. 9. Amplitude-frequency reponse curves for different: (a) R, (b) r0

From Fig. 9b, we can find that with an increase in of the inner diameter r0 of the annular
plate, the resonance region of the system becomes narrower and any two amplitude frequency
curves disclose two intersecting points: the amplitude of the region between two intersecting
points increases with the increase of r0, and the amplitude in other regions out of the region of
the intersecting points decrease with the increase of r0.

5. Conclusions

In this paper, the parameter principal resonance for multi-dimensional vibration of a rotating
annular plate subjected to parametric excitation and forced excitation in a bidirectional magnetic
field is studied, and vibration differential equations with a static load term are derived. The
amplitude-frequency response equations of the system for different cases are obtained by using
the multi-scale method, and the effects of the variable parameters on the resonance amplitude
of the system in the corresponding cases are discussed. The results have shown that:

• When the resonance response occurs in the first order mode, the amplitude and its multi-
-variate properties of the system exhibit complicated changes with different parameters.

• When the resonance response occurs in the second order mode, the response is similar to
the principal parameter resonance. The resonance amplitude of the system changes with
different parameters.

• When the longitudinal response occurs, the response is similar to the primary resonance.
With an increase in the magnetic induction intensity, radial load, external diameter of the
annular plate and a decrease in the disturbance of the radial load, the amplitude of the
system increases gradually. When thickness of the plate changes, the amplitude-frequency
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curve shows the intersection point, and the amplitude changes with different regularity on
both sides of the intersection point.
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